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Abstract—Detection of moving objects is a key component
in mobile robotic perception and understanding of the envi-
ronment. In this paper, we describe a realtime independent
motion detection algorithm for this purpose. The method is
robust and is capable of detecting difficult degenerate motions,
where the moving objects is followed by a moving camera in
the same direction. This robustness is attributed to the use
of efficient geometric constraints and a probability framework
which propagates the uncertainty in the system. The proposed
independent motion detection framework integrates seamlessly
with existing visual SLAM solutions. The system consists of
multiple modules which are tightly coupled so that one module
benefits from another. The integrated system can simultaneously
detect multiple moving objects in realtime from a freely moving
monocular camera.

I. INTRODUCTION

SLAM involves simultaneously estimating locations of
newly perceived landmarks and the location of the robot
itself while incrementally building a map of an unknown
environment. Over the last decade, SLAM has been one of
the most active research fields in robotics and excellent results
have been reported by many researchers [1]; predominantly
using laser range-finder sensors to build 2-D maps of planar
environments. Though accurate, laser range-finders are expen-
sive and bulky, so lot of researchers turned to cameras which
provide low-cost, full 3-D and much richer intuitive “human-
like” information about the environment. So last decade also
saw a significant development in vision based SLAM systems
[2], [3], [4]. But almost all these SLAM approaches assume a
static environment, containing only rigid, non-moving objects.
Moving objects are taken as noise sources and filtered out.
Though, this may be a feasible solution in less dynamic
environments, but it becomes unavoidable as the environment
becomes more and more dynamic. Also accounting for both
the static and moving objects provides richer information about
the environment. A robust solution to the SLAM problem in
dynamic environments will expand the potential for robotic
applications, especially in applications which are in close
proximity to human beings and other robots. As put by [5],
robots will be able to work not only for people but also with
people.

The solution to the moving object detection and segmen-
tation problem will act as a bridge between the static SLAM
and its counterpart for dynamic environments. But, motion
detection from a freely moving monocular camera is an ill-
posed problem and a difficult task. The moving camera causes
every pixel to appear moving. The apparent pixel motion of
points is a combined effect of the camera motion, independent

object motion, scene structure and camera perspective effects.
Different views resulting from the camera motion are con-
nected by a number of multiview geometric constraints. This
constraints can be used for the motion detection task. Those
inconsistent with the constraints can be labeled as moving
regions or outliers.

We propose a realtime independent motion detection algo-
rithm with the aid of an online visual SLAM algorithm. The
moving object detection is robust and is capable of segmenting
difficult degenerate motions, where the moving objects is
followed by a moving camera in the same direction. We
introduce efficient geometric constraints that helps in detecting
these degenerate motions and a probability framework that
recursively updates feature probability and takes into consid-
eration the uncertainty in camera pose estimation. The final
system integrates independent motion detection with visual
SLAM. We introduce several feedback paths between these
modules, which enables them to mutually benefit each other. A
full perspective camera model is used, and we do not have any
restrictive assumptions on the camera motion or environment.
Unlike many of the existing works, the proposed method is
online and incremental in nature and scales to arbitrarily long
sequences. We also describe how this system can be used
to constrain and speed-up object detection algorithms, where
detection of specific object category like person is required.
Finally we show experimental results of this algorithm on real
image datasets.

II. RELATED WORKS

The task of moving object detection and segmentation, is
much easier if a stereo sensor is available, which allows
additional constraints to be used for detecting independent mo-
tion [6], [7], [8]. However the problem is very much ill-posed
for monocular systems. The problem of motion detection and
segmentation from a moving camera has been a very active
research area in computer vision community. The multiview
geometric constraints used for motion detection, can be loosely
divided into four categories. The first category of methods
used for the task of motion detection, relies on estimating
a global parametric motion model of the background. These
methods [9], [10], [11] compensate camera motion by 2D
homography or affine motion model and pixels consistent with
the estimated model are assumed to be background and outliers
to the model are defined as moving regions. However, these
models are approximations which only holds for the restricted
cases of camera motion and scene structure.



The problems with 2D homography methods led to plane-
parallax [12], [13] based constraints. The “planar-parallax”
constraints, represents the scene structure by a residual dis-
placement field termed parallax with respect to a 3D reference
plane in the scene. The plane-parallax constraint was designed
to detect residual motion as an after-step of 2D homography
methods. Also they are designed to detect motion regions
when dense correspondences between small baseline camera
motions are available. Also, all the planar-parallax methods
are ineffective when the scene cannot be approximated by a
plane.

Though the planar-parallax decomposition can be used for
egomotion estimation and structure, the traditional multi-view
geometry constrains like epipolar constraint in 2 views or
trillinear constraints in 3 views and their extension to N views
have proved to be much more effective in scene understanding
as in structure from motion (SfM) and visual SLAM. This
constraints are well understood and are now textbook materi-
als [14].

In realtime monocular visual SLAM systems, moving ob-
jects have not yet been dealt properly. We found the following
three works for visual SLAM in dynamic environments: a
work by Sola [15] and two other recent works of [16] and [17].
Sola [15] does an observability analysis of detecting and
tracking moving objects with monocular vision. He proposes
a BiCamSLAM [15] solution with stereo cameras to bypass
the observability issues with mono-vision. In [16], a 3D object
tracker runs parallel with the monocular camera SLAM [2] for
tracking a predefined moving object. This prevents the visual
SLAM framework from incorporating moving features lying
on the moving object. But the proposed approach does not
perform moving object detection; so moving features apart
from those lying on the tracked moving object can still corrupt
the SLAM estimation. Also they used a model based tracker,
which can only track a previously modeled object with manual
initialization. The work by Migliore et al. [17] maintains two
separate filters: a monoSLAM filter [2] with the static features
and a bearing only tracker for the the moving features. As
concluded by Migliore et al., the main disadvantage of their
system is the inability to obtain an accurate estimate of the
moving objects in the scene. This is due to the fact that they
maintain separate filters for tracking each individual moving
feature, without any analysis of the structure of the scene;
which for e.g can be obtained from clustering points belonging
to same moving object or performing same motion. This is
also the reason that they are not able to use the occlusion
information of the tracked moving object, for extending the
lifetime of features as in [16].

Previously in [18], we used robot odometry to estimate the
camera motion, which was then used to detect independently
moving objects in the scene. In this work we extend that work
to freely moving monocular camera, without any aid from
odometry or IMU kind of devices.

III. SYSTEM OVERVIEW

In the first step, sparse salient features are detected and
tracked through the image sequence. An online visual SLAM
algorithm estimates the camera trajectory and 3D structure
using the feature tracks. Between any two views, relative
camera motion and locations of features is used to evaluate
the geometric constraints, as detailed in Sec. IV-A. A recursive
Bayes filter is used to compute the probability of the feature
being stationary or dynamic through the geometric constraints.
The present probability of a feature being dynamic is fused
with the previous probabilities in a recursive framework to
give the updated probability of the features. The probabilities
also take care of uncertainty in pose estimation by the visual
SLAM. Features with high probabilities of being dynamic are
either mismatched features arising due to tracking error or fea-
tures belonging to some independently moving objects. This
residual feature tracks are then clustered into independently
moving entities, using spatial proximity and motion coherence.

A. Feature Tracking

In order to detect moving objects, we should be able to get
feature tracks on the moving bodies also. This is challenging as
different bodies are moving at different speeds. Thus, contrary
to conventional SLAM, where the features belonging moving
objects are not important, we need to pay extra caution to
feature tracking in this scenario. In each image, a number of
salient features (FAST corners [19]) are detected, at different
image pyramidal levels while ensuring the features are suffi-
ciently spread all over the image. A patch is generated on these
feature locations and are matched across images on the basis
of zero-mean SSD scores to produce feature tracks. A number
of constraints is used to improve feature matching. When a
match is found, we try to match that feature backward in the
original image. Matches, in which each point is the other’s
strongest match are only taken as valid. 3D reconstruction by
visual SLAM enables the use of additional constraints. For the
3D points, whose depth is computed from the visual SLAM
module, the 1D epipolar search is reduced to just around the
projection of the 3D point on the image with predicted camera
pose. Also with the knowledge of camera relative pose and
depth of a feature, an affine warp can be performed on the
image patches to maintain view invariance from the patch’s
first and current observation.

B. Visual SLAM Framework

The method proposed is independent of the SLAM al-
gorithm used. However, we chose the bundle adjustment
visual SLAM [20], [4], [21] framework over the filter based
approaches [2], [22]. Apart from accuracy benefits [23], the
bundle adjustment visual SLAM methods extracts as much
correspondence information as possible compared to very
sparse map (about 10-30 features per frame) in filter based ap-
proaches. Our implementation closely follows to that of [20],
[4]. In brief, a 5-point algorithm [24] with RANSAC is used
to estimate the initial epipolar geometry, and subsequent pose
is determined with 3-point resection [25]. Some of the frames



are selected as key-frames, which are used to triangulate 3D
points. The set of 3D points and the corresponding keyframes
are used in by the bundle adjustment process to iteratively
minimize reprojection error. The bundle adjustment is initially
performed over the most recent keyframes, before attempting
a global optimization. The whole algorithm is implemented
as two-threaded process, where one thread performs tasks
like camera pose estimation, key-frame decision and addition,
another back-end thread performs optimizes this estimate by
bundle adjustment.

IV. INDEPENDENT MOTION DETECTION

Using camera relative motion and feature tracks, the task is
to assign each feature tracks a probability of being dynamic or
static. Efficient geometric constraints are used to form these
probabilistic fitness scores. With each new frame, the proba-
bilities of feature being dynamic is fused with the previous
probabilities in a recursive framework to give the updated
probability of the features. Features with high probability
of being dynamic are assigned to one of the independently
moving objects.

A. Geometric Constraints
Epipolar constraint is the commonly used constraint that

connects two views. Reprojection error or its first order
approximation called Sampson error, based on the epipolar
constraint is used throughout the structure and motion esti-
mation by the visual SLAM module. Basically they measure
how far a feature lies from the epipolar line induced by the
corresponding feature in the other view. Though these are the
gold standard cost functions for 3D reconstruction, it is not
good enough for independent motion detection. If a 3D point
moves along the epipolar plane formed by the two views, its
projection in the image move along the epipolar line. Thus
in spite of moving independently, it still satisfies the epipolar
constraint. This is depicted in Fig. 1. This kind of degenerate
motion, is quite common in real world scenarios, e.g camera
and a object are moving in same direction as in camera
mounted in car moving through a road, or camera-mounted
robot following behind a moving person. To detect degenerate
motion, we make use of the camera motion and 3D structure,
to estimate a bound in the position of the feature along the
epipolar line. We describe this as Flow Vector Bound (FVB)
constraint.

Fig. 1. LEFT: The world point P moves non-degenerately to P
′

and hence
x

′
, the image of P

′
does not lie on the epipolar line corresponding to x.

RIGHT: The point P moves degenerately in the epipolar plane to P
′
. Hence,

despite moving, its image point lies on the epipolar line corresponding to the
image of P.

1) Flow Vector Bound (FVB) Constraint:: For a general
camera motion involving both rotation and translation R, t,
the effect of rotation can be compensated by applying a
projective transformation to the first image. This is achieved by
multiplying feature points in view 1 with the infinite homog-
raphy H = KRK−1 [14]. The resulting feature flow vector
connecting feature position in view2 to that of the rotation
compensated feature position in view1, should lie along the
epipolar lines. Now assume that our camera translates by t
and pn,pn+1 be the image of a static point X . Here pn is
normalized as pn = (u, v, 1)T . Attaching the world frame to
the camera center of the 1st view, the camera matrix for the
views are K[I|0] and K[I|t]. Also, if z is depth of the scene
point X , then inhomogeneous coordinates of X is zK−1pn.
Now image of X in the 2nd view, pn+1 = K[I|t]X . Solving
we get, [14]

pn+1 = pn +
Kt

z
(1)

Equation 1 describes the movement of the feature point
in the image. Starting at point pn in In it moves along the
line defined by pn and epipole, en+1 = Kt. The extent of
movement depends on translation t and inverse depth z. From
equation 1, if we know depth z of a scene point, we can
predict the position of its image along the epipolar line. In
absence of any depth information, we set a possible bound in
depth of a scene point as viewed from the camera. Let zmax
and zmin be the upper and lower bound on possible depth
of a scene point. We then find image displacements along
the epipolar line, dmin and dmax, corresponding to zmax and
zmin respectively. If the flow vector of a feature, does not’t
lie between dmin and dmax, it is more likely to be an image
of an independent motion.

The structure estimation from visual SLAM module helps in
reducing the possible bound in depth. Instead of setting zmax
to infinity, known depth of the background enables in setting
a more tight bound, and thus better detection of degenerate
motion. The depth bound is adjusted on the basis of depth
distribution along the particular frustum.

The probability of satisfying flow vector bound constraint
P (FV B). can be computed as

P (FV B) =
1

1 +
(
FV − dmean

drange

)2β
(2)

Here dmean =
dmin + dmax

2
and drange =

dmax − dmin
2

.
dmin and dmax are the bound in image displacements, The
distribution function is similar to a Butterworth bandpass filter.
P (FV B) has a high value if the feature lies inside the bound
given by FVB constraint, and the probability falls rapidly as
the feature lies outside the bound. Larger the value of β, more
rapidly it falls. In our implementation, we used β = 10.

B. Computing Independent Motion Probability

In this section we describe a recursive formulation based
on Bayes filter to derive the probability of a world point and



hence its projected image point being classified as stationary
or dynamic. The motion noise and image pixel noise if any are
bundled into a Gaussian probability distribution of the epipolar
lines as derived in [14] and denoted by ELi = N(µli,

∑
l
i)

where ELi refers to the set of epipolar lines corresponding
to image point i, and N (µli,

∑
l
i ) refers to the standard

Gaussian probability distribution over this set.
Let pni be the ith point in image In. The probability that

pni is classified as stationary is denoted as P (pni|In, In−1) =
Pn,s(pi) or Pn,si in short, where the suffix s signifying static.
Then, with Markov approximation and recursive probability
update of a point being stationary given a set of images can
be derived as

P (pni|In+1, In, In−1) = ηs
iPn+1,s

iPn,s
i (3)

Here ηsi is normalization constant that ensures the probabili-
ties sum to one.

The term Pn,si can be modeled to incorporate the dis-
tribution of the epipolar lines ELi. Given an image point
pn−1

i in In−1 and its corresponding point pni in In then
the epipolar line that passes through pni is determined as
ln
i = en × pn

i. The probability distribution of the feature
point being stationary or moving due to epipolar constraint is
defines as

PEP,s
i = (2π

∑
t

)−0.5exp(−0.5(lni−µni)τ
∑

l
−1(lni−µni))

(4)
However this does not take into account the misclassification
arising due to degenerate motion explained in previous sec-
tions. To overcome this the eventual probability is fused as a
combination of epipolar and flow vector bound constraints as

Pn,s
i = α · PEP,si + (1− α) · PFV B,si (5)

where, α balances the weight of each constraint. A χ2

test is performed to detect if the epipolar line lni due to
the image point is satisfying the epipolar constraint. When
Epipolar constraint is not satisfied, α takes a value close to 1
rendering the FVB probability inconsequential. As the epipolar
line lni begins indicating a strong likelihood of satisfying
epipolar constraint, the role of FVB constraint is given more
importance, which can help detect the degenerate cases.

An analogous set of equations characterize the probability
of an image point being dynamic that are not delineated
due to brevity of space. In our implementation, the envelope
of epipolar lines [14] is generated by a set of F matrices
distributed around the mean obtained from of the R,t trans-
formation between two frames as estimated by the visual
SLAM. Hence a set of epipolar lines corresponding to those
matrices are generated and characterized by the sample set,
ELss

i =
(
l̂1
i, l̂2

i.......l̂q
i
)

and the associated probability set,

PEL =
(
wl̂1

i, wl̂2
i.......wl̂q

i
)

where each wl̂ji is the proba-
bility of that line belonging to the sample set ELssi computed
through usual Gaussian procedures. Then the probability that

an image point pni is static is given by,

Pn,s
i =

∑
j=1→q

αj ·PEP,l̂ji
S ·pni+(1−αj)·PFV B,l̂ji

S ·pni·wl̂ji

(6)
where, PEP,l̂ji

S and PFV B,l̂ji
S are the probabilities of the

point being stationary due to the respective constraints with
respect to the epipolar line l̂ji.

C. Clustering Independent Motions

Features with high probabilities of being dynamic are ei-
ther belongs to tracking outliers or potential moving objects.
We adopt a simple move-in-unison model to cluster. Spatial
proximity and motion coherence is used to cluster these
feature tracks into independently moving entities. By motion
coherence, we use the heuristic that the variance in the distance
between features belonging to same object should change
slowly in comparison. These features of spatial proximity and
motion coherence are then used in an agglomerative clustering
framework to divide the dynamic features into moving entities.

D. Feedback to Visual SLAM

Features lying over the independently moving objects are
not used in the structure and motion estimation by the visual
SLAM module. In spite of the use of robust estimators like
RANSAC [26], independently moving objects can give rise to
incorrect initial SfM estimate and lead the bundle adjustment
to converge to a local minima. The feedback also results in
less number of outliers in the visual SLAM process. Thus the
structure and motion estimate is more well conditioned and
less number of RANSAC iterations is needed [26]. Apart from
improvement in the camera motion estimate, the knowledge
of the independent foreground objects coming from motion
segmentation helps in the data association of the features,
which is currently being occluded by that object. For the fore-
ground independent motions, we form a convex-hull around
the tracked points clustered as an independently moving entity.
Existing 3D points lying inside this region is marked as not
visible and is not searched for a match. This prevents 3D
features from unnecessary deletion and reinitialization, just
because it was occluded by an independent motion for some
time.

V. EXPERIMENTAL RESULTS

The system is implemented as threaded processes in C++
and runs in realtime at the average of 22Hz. The Independent
motion detection module takes around 10ms for each image of
512x284 resolution and with 3 independently moving bodies.

A. Results of Moving Object Detection

The system has been tested on a number of real image
datasets, with varying number and type of moving entities.
Moving object detection results in the three sequences are
discussed next.

Moving Box Sequence: This is same sequence as used
in [16]. A previously static box is being moved in front of the
camera which is also moving arbitrarily. However unlike [16],



Fig. 2. Epipolar lines in Grey, flow vectors after rotation compensation is shown in orange. Cyan lines show the distance to epipolar line. Features detected as
independently moving are shown as red dots. Note the near-degenerate independent motion in the middle and right image. However the use of FVB constraint
enables efficient detection of degenerate motion.

our method does not uses any 3D model, and thus can work
for any previously unseen object. As shown in Fig. 3 our
algorithm reliably detects the moving object just on the basis
of motion constraints. The difficulty with this sequence is that
the foreground moving box is nearly white and thus provides
very less features. This sequence also highlights the detection
of previously static moving objects.

Fig. 3. Results from the Moving Box Sequence

New College Sequence: We tested our results on some dy-
namic parts of the publicly available New College dataset [27].
Only left of the stereo image pairs has been used. In this
sequence, the camera moves along an roughly circular campus
path, and three moving persons passes by the scene. Fig. 4
depicts the motion segmentation results for this sequence.

B. Detection of Degenerate Motions

Fig. 2 shows an example of degenerate motion detection,
as the flow vectors on the moving person almost move along
epipolar lines, but they are being detected due to usage the
FVB constraint. This results verifies system’s performance for

Fig. 4. Independent Motion detection results from the New College Sequence.

arbitrary camera trajectory, degenerate motion and changing
number of moving entities.

C. Person detection

Some applications demand people to be explicitly detected
from other moving objects. We use “part-based” represen-
tations [28], [29] for person detection. The advantage of
the part-based approach is that it relies on body parts and
therefore it is much more robust to partial occlusions than the
standard approach considering the whole person. We model
our implementation as described in [28]. Haar-feature based
cascade classifiers was used to detect different human body
parts, namely upper body, lower body, full body and head
and shoulders. These detectors often leads to many false
alarms and missed detections. Bottom-left image of Fig. 5
depicts the false detections, by this individual detectors. A
probabilistic combination [28] of these individual detectors
gives a more robust person detector. But running four Haar-
like-feature based detectors on the whole image takes about
400ms, which is very high for realtime implementation. We
use knowledge of motion regions as detected by our method, to



reduce the search space of part detectors. This greatly reduces
the computations and the time taken is mostly less than 40ms.
Also the detections have less false positives.

Fig. 5. TOP LEFT: A scene involving a moving toy car and person from
the indoor sequence. TOP RIGHT: Detected moving regions are overlaid in
green. BOTTOM LEFT: Haar classifier based body part detectors. BOTTOM
RIGHT: Person detected by part-based person detection over image regions
detected as moving.

VI. CONCLUSIONS

This paper presents a realtime moving object detection algo-
rithm from a single freely moving monocular camera. An on-
line visual SLAM algorithm running simultaneously estimates
the camera egomotion. Multiview geometric constraints were
explored to successfully detect various independent motion
including degenerate motions. A probabilistic framework in
the model of a recursive Bayes filter was developed that
assigns probability of a feature being stationary or moving
based on geometric constraints. Uncertainty in camera pose
estimation is also propagated into this probability estimation.
Unlike many existing methods, the proposed methods works
with a full perspective camera model, and have no restric-
tive assumptions about camera motion and environment. The
method presented here can find immediate applications in
various robotics applications involving dynamic scenes.
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