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Feature Space Objective 

One feature space that satisfies all objectives is 
the global time-varying 3D coordinate for each 
pixel. But currently impractical.

How do we get such a feature space?

• Needs to be low-dimensional (typically single-digit)
• To be practical for efficient inference

• Features for pixels belonging to the same object 
should be closer compared to features of two 
pixels belonging to different semantic objects.
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Feature Space Optimization
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Scaling up to long videos

Overlapping blocks of frames. Each block is a fully-connected dense CRF.
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CamVid dataset

[1]. Brostow et al. Semantic object classes in video: A high-definition ground truth database. In PRL, 2009

Non-ConvNet unaries Mean IOU (%) Temporal consistency (%)

ALE (Ladicky et al. 2009) 53.59 72.2

SuperParsing  (Tighe and Lazebnik 2013) 42.03 88.8

Tripathi et al. 2015 53.18 76.8

Liu and He 2015 47.2 77.6

TextonBoost + Our approach 55.2 87.3

ConvNet unaries Mean IOU (%) Temporal consistency (%)

SegNet Basic 2015 46.4 62.5

SegNet Extended 2016 55.6 -

Dilation 2016 65.29 79.0

Dilation + Our approach 66.12 88.3

IOU  - intersection over union
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Cityscapes
• Results on Cityscapes validation set [1]

Mean IOU (%) Temporal Consistency (%)

Adelaide [2] 68.6 -

Dilation unary [3] 68.65 88.14

Dilation + Our approach 70.30 94.71

[1]. Cordts et al. The Cityscapes dataset for semantic urban scene understanding. In CVPR, 2016

[2]. Lin et al. Efficient piecewise training of deep structured models for semantic segmentation. In CVPR, 2016

[3]. F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016





Conclusion

• A CRF model that optimizes over whole video

• Exploits long range context available in video to obtain better and 
temporally consistent semantic segmentation.

• A low dimensional feature space that captures correspondence 
information is vital for videos.

• Uses a fast linear solver based optimization to obtain such feature space 
that captures correspondence information obtained from optical flow.


