Feature Space Optimization for Semantic Video Segmentation Abhijit Kundu, Vibhav Vineet, and Vladlen Koltun

Independent prediction

e.g., ConvNet

Structured prediction

e.g., DenseCRF

Independent prediction

e.g., ConvNet

Structured prediction

e.g., DenseCRF

Semantic video segmentation:

Independent prediction

e.g., ConvNet

Structured prediction

e.g., DenseCRF

Semantic video segmentation: Naiv

: Naive approach

Per-frame independent prediction

Per-frame structured prediction

Independent prediction

e.g., ConvNet

Structured prediction

e.g., DenseCRF

Semantic video segmentation: Our approach

••

Per-frame independent prediction

Structured prediction for the entire video

Grid CRF

Higher-order CRF

Dense CRF

Grid CRF

Higher-order CRF

Dense CRF

What about video?

Grid CRF

Higher-order CRF

Dense CRF

3D grid CRF

Grid CRF

Higher-order CRF

Dense CRF

2D dense CRF with sparse temporal edges

Grid CRF

Higher-order CRF

Dense CRF

3D dense CRF

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{n} w^m \kappa^m(f_i, f_j)$$

Label compatibility function (e.g., Potts function)

Pairwise potential:

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{K} w^m \kappa^m(f_i, f_j)$$

Label compatibility function (e.g., Potts function) Linear combination of Gaussian kernels

$$\kappa^m(\boldsymbol{f}_i, \boldsymbol{f}_j) = \exp\left(-\frac{\|\boldsymbol{f}_i - \boldsymbol{f}_j\|}{\sigma_m^2}\right)$$

 \boldsymbol{f}_i is some arbitrary feature space for i^{th} pixel.

Pairwise potential:

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{\kappa} w^m \kappa^m(\boldsymbol{f}_i, \boldsymbol{f}_j)$$

17

Label compatibility function (e.g., Potts function) Linear combination of Gaussian kernels

$$\kappa^m(\boldsymbol{f}_i, \boldsymbol{f}_j) = \exp\left(-\frac{\|\boldsymbol{f}_i - \boldsymbol{f}_j\|}{\sigma_m^2}\right)$$

 f_i is some arbitrary feature space for i^{th} pixel.

Bilateral feature space

Provides a contrast-sensitive **spatial** smoothness prior

$$E(x) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i} \sum_{j>i} \psi_{p}(x_{i}, x_{j})$$
unary term pairwise term

Pairwise potential:

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{K} w^m \kappa^m(f_i, f_j)$$

Label compatibility function (e.g., Potts function) Linear combination of Gaussian kernels

$$\kappa^m(\boldsymbol{f}_i, \boldsymbol{f}_j) = \exp\left(-\frac{\|\boldsymbol{f}_i - \boldsymbol{f}_j\|}{\sigma_m^2}\right)$$

 f_i is some arbitrary feature space for i^{th} pixel.

<image>

 $f_i = \begin{bmatrix} x \\ y \\ t \\ r \\ g \\ b \end{bmatrix}$

Provides a contrast-sensitive spatio-temporal smoothness prior

- Needs to be low-dimensional (typically single-digit)
 - To be practical for efficient inference
- Features for pixels belonging to the same object should be closer compared to features of two pixels belonging to different semantic objects.
- Corresponding pixels should map to points which are close in the feature space.

- Needs to be low-dimensional (typically single-digit)
 - To be practical for efficient inference
- Features for pixels belonging to the same object should be closer compared to features of two pixels belonging to different semantic objects.
- Corresponding pixels should map to points which are close in the feature space.

- Needs to be low-dimensional (typically single-digit)
 - To be practical for efficient inference
- Features for pixels belonging to the same object should be closer compared to features of two pixels belonging to different semantic objects.
- Corresponding pixels should map to points which are close in the feature space.

Naïve feature spaces e.g.

 $\begin{bmatrix} x \\ y \\ y \\ r \end{bmatrix}, \begin{bmatrix} x \\ y \\ t \\ r \\ g \\ b \end{bmatrix}, \begin{bmatrix} x \\ y \\ t \\ d \end{bmatrix}$

does not preserve correspondence

- Needs to be low-dimensional (typically single-digit)
 - To be practical for efficient inference
- Features for pixels belonging to the same object should be closer compared to features of two pixels belonging to different semantic objects.
- Corresponding pixels should map to points which are close in the feature space.

How do we get such a feature space?

- Needs to be low-dimensional (typically single-digit)
 - To be practical for efficient inference
- Features for pixels belonging to the same object should be closer compared to features of two pixels belonging to different semantic objects.
- Corresponding pixels should map to points which are close in the feature space.

How do we get such a feature space?

One feature space that satisfies all objectives is the global time-varying 3D coordinate for each pixel. But currently impractical.

• Find a feature embedding by optimization that preserves pixel correspondence.

Time

- Find a feature embedding by optimization that preserves pixel correspondence.
- Spatio-temporal regularization guided by optical flow and long-term tracks.

- Find a feature embedding by optimization that preserves pixel correspondence.
- Spatio-temporal regularization guided by optical flow and long-term tracks.

$$E(S) = E_u(S) + \gamma_1 E_s(S) + \gamma_2 E_t(S)$$
Data term Spatial smoothness Temporal smoothness

- Find a feature embedding by optimization that preserves pixel correspondence.
- Spatio-temporal regularization guided by optical flow and long-term tracks.

$$E(S) = \underbrace{E_u(S)}_{\text{Data term}} + \underbrace{\gamma_1 E_S(S)}_{\text{Spatial smoothness}} + \underbrace{\gamma_2 E_t(S)}_{\text{Temporal smoothness}} + \underbrace{\gamma_2 E_t(S)}_{\text{Temporal smoothness}} + \underbrace{\gamma_2 E_t(S)}_{\text{Spatial smoothness}} + \underbrace{\gamma_2 E_$$

- Find a feature embedding by optimization that preserves pixel correspondence.
- Spatio-temporal regularization guided by optical flow and long-term tracks.

$$E(S) = E_u(S) + \gamma_1 E_s(S) + \gamma_2 E_t(S)$$
Data term Spatial smoothness Temporal smoothness

- Find a feature embedding by optimization that preserves pixel correspondence.
- Spatio-temporal regularization guided by optical flow and long-term tracks.

$$E(S) = E_u(S) + \gamma_1 E_s(S) + \gamma_2 E_t(S)$$
Data term Spatial smoothness Temporal smoothness

Without feature optimization

With feature optimization

0.5x (Slow Motion)

Without feature optimization

With feature optimization

Scaling up to long videos

Overlapping blocks of frames. Each block is a fully-connected dense CRF.

CamVid dataset

Non-ConvNet unaries	Mean IOU (%)	Temporal consistency (%)
ALE (Ladicky et al. 2009)	53.59	72.2
SuperParsing (Tighe and Lazebnik 2013)	42.03	88.8
Tripathi <i>et al.</i> 2015	53.18	76.8
Liu and He 2015	47.2	77.6
TextonBoost + Our approach	55.2	87.3

ConvNet unaries	Mean IOU (%)	Temporal consistency (%)
SegNet Basic 2015	46.4	62.5
SegNet Extended 2016	55.6	-
Dilation 2016	65.29	79.0
Dilation + Our approach	66.12	88.3

[1]. Brostow *et al*. Semantic object classes in video: A high-definition ground truth database. In PRL, 2009IOU - intersection over union

Comparison with prior semantic *video* segmentation methods

Comparison with prior semantic image segmentation methods

• Results on Cityscapes validation set [1]

	Mean IOU (%)	Temporal Consistency (%)
Adelaide [2]	68.6	-
Dilation unary [3]	68.65	88.14
Dilation + Our approach	70.30	94.71

- [1]. Cordts et al. The Cityscapes dataset for semantic urban scene understanding. In CVPR, 2016
- [2]. Lin et al. Efficient piecewise training of deep structured models for semantic segmentation. In CVPR, 2016
- [3]. F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016

Conclusion

- A CRF model that optimizes over whole video
- Exploits long range context available in video to obtain better and temporally consistent semantic segmentation.
- A low dimensional feature space that captures correspondence information is vital for videos.
- Uses a fast linear solver based optimization to obtain such feature space that captures correspondence information obtained from optical flow.