
Multi-scale Perception and Path Planning
on Probabilistic Obstacle Maps

Florian Hauer1 Abhijit Kundu2 James M. Rehg3 Panagiotis Tsiotras4

Georgia Institute of Technology, Atlanta, GA 30332-0150

Abstract— We present a path-planning algorithm
that leverages a multi-scale representation of the
environment. The algorithm works in n dimensions.
The information of the environment is stored in a tree
representing a recursive dyadic partitioning of the
search space. The information used by the algorithm is
the probability that a node of the tree corresponds to
an obstacle in the search space. The complexity of the
proposed algorithm is analyzed and its completeness
is shown.

I. Introduction
The success of any path-planning algorithm depends

on the perception algorithm used to localize the agent
and create the map of the environment, including the
obstacles. Often, it is advantageous to hierarchically
organize the collected data about the environment. This
is motivated by the following two observations: First,
processing all collected data at the finest resolution
may be computationally prohibitive, especially for small
robotic platforms with limited on-board computational
resources. In addition, processing all collected informa-
tion at the same temporal and spatial scale may not
even be necessary for path-planning purposes, as path
feasibility is primarily determined by the obstacles in the
vicinity of the vehicle; far away obstacles, on the other
hand, affect longer-term objectives, such as exploring the
environment, reaching the goal state, etc. Second, this
multi-scale hierarchy is often brought about by the per-
ception system itself. Indeed, depending on the sensors,
the collected information about the environment is rarely
uniformly accurately known, and collected information
is often represented by probability values modeling mea-
surement uncertainty [21].

Different approaches have been studied for solving
path-planning problems using multi-scale maps. Top-
down approaches consist of finding a path at the coarsest
resolution level and subsequently progressively increasing
its resolution [8], [16]. Bottom-up approaches solve the
problem at each node at the finest resolution level and

1PhD candidate, School of Aerospace Engineering,
Email:fhauer3@gatech.edu

2PhD candidate, College of Computing and
Institute for Robotics and Intelligent Machines,
Email:abhijit.kundu@gatech.edu

3Profesor, College of Computing and Institute for Robotics and
Intelligent Machines, Email:rehg@cc.gatech.edu

4Professor, School of Aerospace Engineering and Institute for
Robotics and Intelligent Machines, Email:tsiotras@gatech.edu

Support for this work has been provided by ARO MURI award
W911NF-11-1-0046, ONR award N00014-13-1-0563 and the Intel
Science and Technology Center in Embedded Computing

combine the results at different resolution levels. This
approach yields optimality, but requires knowing and
processing the entire map at the finest resolution [13],
which may be computationally expensive. Holte [6] de-
scribes an approach that includes bottom-up and top-
down analysis of the data by generalizing the multi-
scale problem to a multi-abstraction problem. From the
finest information, an abstraction of the problem can be
constructed such that the topology of the original search
space is maintained in the abstraction, and the size of
the problem is reduced. Repeating the process leads to
a sequence of abstractions topologically similar to the
original search space, but with a decreasing size of the
resulting abstract search spaces. Another approach is to
use information at different resolutions simultaneously.
This idea is explored in [3], where areas near the current
vehicle are represented accurately, while farther-away
areas are coarsely-encoded by using a transformation
on the wavelet coefficients. The approach is shown to
be complete and very fast. A similar approach is used
to create a local map in [1], but quadtrees are used
instead of wavelets and only local planning is done. Other
algorithms have been developed using multi-resolution
maps, but they are often applied to a given non-uniform
grid, without using the information at different resolution
scales for the same region of the search space [4], [17].

In this paper we propose an extension of the algorithm
introduced in [3] that is applicable for solving path-
planning problems in n-dimensional search spaces. The
algorithm uses an approach similar to [1] to create a local
representation of the environment. We also propose a
new way to incorporate the collected information that
takes into account the spatial coherency of the data using
a conditional random field (CRF) [12]. The algorithm
directly utilizes data-structures created from state-of-
the-art perception algorithms, such as octrees [7] or
wavelet-coefficient trees [22], which allows the proposed
path-planning algorithm to be easily incorporated in
such perception algorithms, thus tightly integrating the
perception and execution layers in autonomous robotic
systems.

II. Problem Formulation
A. Multiresolution World Representation

The environment W ⊂ Rd is assumed to be a d-
dimensional grid world contained within a hypercube of
side length 2`. The world W is not perfectly known,
but an estimate of the probability label of each cell is
maintained in a tree T = (N ,R) created from a set

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 4210

of measurements D. Each nk,p ∈ N has the following
properties:
• It represents a hypercube H(nk,p) ⊆ W of side

length 2k and volume 2dk centered at p.
• It is at depth `− k in T .
• Its children are nk−1,qi , i ∈ [1, 2d] where qi = p +

2k−2ei and where ei is each of the 2d (d-dimensional)
vectors generated by [±1,±1, . . . ,±1]. The hyper-
cubes associated with the children of the node nk,p

induce a dyadic partitioning of H(nk,p), as follows
H(nk,p) =

⋃2d
i=1 H(nk−1,qi).

• The node is a leaf of T if it has no children.
• The value V (nk,p) of node nk,p is the probability

that the label of H(nk,p) is obstacle if it is a leaf, or
the average of the values of its children if the node
nk,p is not a leaf. That is,

V (nk,p) =
{
P (onk,p = obstacle|D), if nk,p is a leaf,
1

2d
∑2d

i=1 V (nk−1,qi), otherwise,

where onk,p ∈ {obstacle, free space} is the binary
occupancy label associated with H(nk,p) and D is
the set of measurements used to create T .

B. The Path-Planning Problem
Two nodes of T are neighbors if their corresponding

hypercubes share a face, specifically, their intersection is
a hypercube of dimension d−1. A necessary and sufficient
condition for two nodes nk1,p1 and nk2,p2 to be neighbors
is that both of the following two conditions are satisfied:
a) ‖p1 − p2‖∞ = 2k1−1 + 2k2−1,
b) There exists a unique i ∈ [1, d], such that |(p1 −

p2)i| = 2k1−1 + 2k2−1, where (p1 − p2)i is the ith

component of the vector.
We define a path π = (nk1,p1 , nk2,p2 , . . . , nkN ,pN) in

N to be a sequence of nodes nki,pi ∈ N , each at
corresponding position pi and depth `−ki in T , such that
two consecutive nodes of the sequence are neighbors. A
path is a finest information path (FIP) if all its nodes
are leafs of T . Note that a finest information path may
contain nodes that are not of unit size. Given ε ∈ [0, 1),
a node nk,p ∈ N is an ε-obstacle if V (nk,p) ≥ 1− 2−dkε.
A path π is ε-feasible if none of its nodes are ε-obstacles.

Proposition 1. If a node in T is an ε-obstacle, then all
leaf nodes descendant from this node are also ε-obstacles.

Proof. Let nk,p ∈ N and let nmi,qi , where i ∈ [1, L] be
the descendant leaf nodes of nk,p. From the definition of
V (nk,p) it can be easily shown that

V (nk,p) = 1
2dk

L∑
i=1

2dmiV (nmi,qi). (1)

Since the leaf nodes descendent from nk,p form a parti-
tion of H(nk,p), it follows that 2dk =

∑L
i=1 2dmi .

Suppose now that nk,p is an ε-obstacle and assume, on
the contrary, that there exists nmj ,qj , j ∈ [1, L] such that
nmj ,qj is not an ε-obstacle, i.e., assume that V (nmj ,qj) <
1 − 2−dmjε. Since nk,p is an ε-obstacle, V (nk,p) ≥ 1 −

2−dkε. It follows, from (1), that

V (nk,p) = 1
2dk

 L∑
i=1,i6=j

2dmiV (nmi,qi) + 2dmjV (nmj ,qj)

< 1− 2d(mj−k) + 2d(mj−k)(1− 2−dmjε) < 1− 2−dkε.

leading to a contradiction.

Using a threshold for the ε-obstacle that depends on
the size of the node extends the work in [3] to any value
of ε ∈ [0, 1) instead of only small enough ε.

III. Proposed Algorithm: The multi-scale Path
Planning (MSPP) Algorithm

The overall idea of the proposed multi-scale Path
Planning (MSPP) algorithm is to iteratively solve smaller
problems instead of solving the original problem at once.
Starting at iteration i = 0 from nk0,p0 = nstart, the
algorithm uses T to create a local representation of the
environment encoded in the reduced graph Gi = (Vi, Ei),
where Vi ⊆ N , as shown in Figure 1. The vertices of Gi

are a collection of the nodes of T forming a partition of
the search space, with fine resolution around the current
node, say nki,pi , at iteration i, and with progressively
coarser resolutions away from nki,pi (see Figure 1). The
resolution levels and the horizon of each resolution level
are controlled by the parameters ` and α (see Section IV-
C). The graph Gi is thus a spatial representation of W,
as opposed to T , which is a hierarchical representation
of W.

In order to avoid confusion, henceforth we will refer
to the elements of Gi as vertices, and the elements of T
as nodes. Every vertex corresponds to a node, but the
converse is not true. The notation node(v) ∈ N will be
used to refer to the node in N corresponding to vertex
v ∈ Vi.

(a) (b) (c)

Fig. 1: (a) Example environmentW with the current cell,
nki,pi , shown in red. Obstacles are drawn with solid blue
color; (b) Corresponding tree T ; (c) Reduced graph Gi

around nki,pi in red and corresponding space partition.

A sequence of path-planning problems are solved in
each graph Gi, (i = 0, 1, 2, . . .) as follows. The shortest
path πgoal

i = (vi
start, π

i
1, π

i
2, π

i
3, . . . , v

i
goal) from vi

start to
vi

goal is found in Gi, where vi
start and vi

goal are the
vertices in Gi that are the (unique) ancestors of nki,pi

and ngoal in T , πi
k ∈ Vi and (πi

k, π
i
k+1) ∈ Ei. Let

nki+1,pi+1 = node(πi
1). Then vi+1

start is set to nki+1,pi+1 and
the process is repeated until πi

1 = vi
goal for some i ≥ 0.

At iteration i, let the partial path candidate πi
start =

(nk0,p0 , nk1,p1 , . . . , nki,pi) be the path constructed by the
algorithm thus far. By construction (see Proposition 5),

4211

the vertices of Gi neighboring nki,pi are necessarily leafs
of T and hence are finest information nodes. It follows
that πi

start is a FIP, and hence at termination the path
π = (nk0,p0 , nk1,p1 , . . . , ngoal) is also a FIP.

A. Reduced Graph Construction
The vertices of Gi are selected recursively

starting from the root of T using the func-
tion GetReducedGraphVertices. A node nk,p ∈ N
is selected to be included as a vertex in Gi if all of the
following are true:
a) The node nk,p is a leaf, or ‖p−pi‖2−

√
d

2 2ki > α2k,
where pi and ` − ki are the position and the depth
of the current node nki,pi , respectively, and α > 0 is
a parameter.

b) The node nk,p is not an ε-obstacle.
c) The node nk,p does not contain a part of the partial

path candidate πi
start = (nk0,p0 , nk1,p1 , . . . , nki,pi),

that is, H(nk,p) ∩H(nkj ,pj) = ∅, j = 0, 1, . . . , i.
When a node is not selected, its children are then

considered, and the process repeats itself until all nodes
of T have been processed. The selected nodes form a
partition of the search space from which we have removed
ε-obstacles (condition b)) and all nodes corresponding
to the current partial path candidate since we want a
loopless ε-feasible solution (condition c)). Every pair of
nodes selected is tested against the neighborhood tests,
and edges are created between neighboring nodes.

Function GetReducedGraphVertices
Data: Node nk,p,Vertex list vertices, Current node

nki,pi

1 if (‖p− pi‖2 −
√

d
2 2ki ≥ α2k OR isLeaf(nk,p)) AND

doesNotContainPath(nk,p) then
2 if cost(nk,p)< M then
3 vertices← vertices ∪ nk,p

4 else
5 foreach nm,q child of nk,p do
6 GetReducedGraphVertices(nm,q,vertices,nki,pi)

B. Backtracking Algorithm
The proposed MSPP algorithm is a backtracking al-

gorithm [18] and is summarized in Algorithm 1. At each
iteration i, the algorithm creates the reduced graph Gi as
detailed in Section III-A. It then evokes a search to find
the shortest path from the vertex vi

start corresponding
to the current node nki,pi = node(vi

start) to the vertex
vi

goal corresponding to the goal node ngoal. To guarantee
completeness of the MSPP algorithm, the invoked search
algorithm must return a solution, if one exists. The A∗
algorithm [5] is used in our implementation. Once the
algorithm reaches the goal, it terminates and returns the
solution path stored in πi

start. Note that if the algorithm
backtracks when nki,pi = nstart then it will have tried
every possible path without finding a solution, in which
case it reports failure.

Algorithm 1: The MSPP Algorithm
Data: Tree T , Start node nstart, Goal node ngoal
Result: ε-feasible FIP from nstart to ngoal or failure

1 i← 0, nki,pi ← nstart,π0
start ← [nki,pi];

2 visits(nk,p)← ∅,∀nk,p;
3 while true do
4 (Gi, v

i
start, v

i
goal)←ReducedGraph(T ,nki,pi);

5 πgoal
i ←SP(Gi, v

i
start, vgoal,i,visits(nki,pi));

6 if exists(πgoal
i) then

7 nki+1,pi+1 ←node(firstElement(πgoal
i));

8 visits(nki,pi)←visits(nki,pi)∪nki+1,pi+1 ;
9 πi+1

start ← [πi
start nki+1,pi+1];

10 if nki+1,pi+1 =ngoal then
11 return πi+1

start;
12 else
13 visits(nki,pi)← ∅;
14 πi+1

start=removeLastElement(πi
start);

15 if πi+1
start = ∅ then

16 Report failure;
17 else
18 nki+1,pi+1 ←lastElement(πi+1

start);

19 i← i+ 1;
20 Report failure;

In our implementation the cost of traversing a node is
chosen as

cost(nk,p) = 2dk(λ1V (nk,p) + λ2) (2)

where λ1, λ2 ∈ (0, 1]. Other costs can be chosen depend-
ing on the problem at hand. The cost in (2) takes into
account the probability that the node nk,p is an obstacle
with weight λ1, and it adds the length of the path
with weight λ2, scaled by the volume of the hypercube
corresponding to the node.

It is clear that it is desirable to detect non-promising
partial path candidates as soon as possible in order to
backtrack early on, and avoid spending computational
resources completing a partial path candidate that will
not lead to a valid solution. The following corollary guar-
antees the existence of a path in G̃i when there exists an
ε-feasible FIP contained in the space represented by G̃i.
In the following, R̃i denotes the region in W represented
by the vertices of G̃i, that is, R̃i =

⋃
vi∈Ṽi H(node(vi)).

Proposition 2. Suppose there exists an ε-feasible FIP
from nki,pi to ngoal contained in R̃i. Then there exists an
ε-feasible path in G̃i from vi

start to vi
goal.

Proof. Suppose there exists an ε-feasible FIP π =
(π1, π2, . . . , πL) from π1 = nki,pi = node(vi

start) to πL =
ngoal contained in R̃i. Note that, for each πj , there exists
a unique vertex vj ∈ G̃i, such that H(πj) ⊂ H(node(vj))
and consider the path (v1, v2, . . . , vL) in G̃i. Note that
v1 = vi

start and vL = vi
goal. Since the path π is ε-feasible,

it follows that πj is not an ε-obstacle. Furthermore,

4212

πj is a descendant of node(vj) ∈ T , hence by the
contrapositive of Proposition 1, vj is not an ε-obstacle.
The path (v1, v2, . . . , vL) is then an ε-feasible path from
vi

start to vi
goal in G̃i.

nstart

ngoal

π1π2
π3

π4

π5

π6 π7 π8 π9

π10

π11

(a)

v6

vigoal

v5

v4

v3v2v1

(b)

Fig. 2: (a) Example environmentW with the current cell,
nki,pi , shown in red. Example of a ε-feasible FIP π from
nki,pi to ngoal shown in orange; (b) The graph G̃i and the
underlying environment partition. vi

start is drawn with
red and orange is used for the path (v1, . . . , vL) in G̃i

corresponding to π. Note that all the nodes from π7 to
ngoal are mapped to the same vertex vi

goal.

IV. Algorithm Properties
A. Completeness

At iteration i, let a valid extension of the current
partial path candidate πi

start = (nk0,p0 , nk1,p1 , . . . , nki,pi)
be an ε-feasible FIP from nki,pi to ngoal that does
not have common nodes with πi

start. Note that a valid
extension is a FIP and hence it is a path consisting
only of leafs of T . The following proposition guaran-
tees that any valid extension of πi

start is contained in
R̃i =

⋃
vi∈Ṽi H(node(vi)), where R̃i is the region in W

represented by the vertices of G̃i. Similarly, we will use
Ri =

⋃
vi∈Vi H(node(vi)) to denote the region repre-

sented by the vertices of Gi. We will also use the notation
H(πi

start) =
⋃i

j=0 H(nkj ,pj).

Proposition 3. Let i be the current iteration number.
Suppose that, for all j = 0, 1, . . . , i − 1, the MSPP algo-
rithm backtracked only if there were no valid extensions
of πj

start. Then, any valid extension of πi
start is fully

contained in R̃i. Furthermore, if the MSPP algorithm
backtracked at iteration i, there is no valid extension of
πi

start.

Proposition 4. The MSPP algorithm is complete.

Proof. The MSPP algorithm performs an informed
depth-first search on a finite tree Tpath, tree of ε-feasible
loopless FIP starting from nstart, so it visits each branch
of the tree Tpath at most once and terminates in finite
time. Suppose now that there exists an ε-feasible FIP
π from nstart to ngoal. Suppose, for the sake of contra-
diction, that π is not found by the MSPP algorithm.
It follows that either the MSPP algorithm returns a
different ε-feasible FIP π′ or it backtracks from nstart
and reports failure (see Line 15 in Algorithm 1). Suppose

that the MSPP algorithm backtracks from nstart, say,
at iteration i. It then follows that πi

start = (nstart).
However, every FIP path from nstart has nstart as its
first element, and hence πi

start ⊂ π. The last expression
implies, however, that πi

start can be extended to ngoal
using an ε-feasible FIP, namely, π. From Proposition 3
it follows that the algorithm does not backtrack from
nstart, a contradiction. Hence the algorithm returns the
ε-feasible FIP π′.

B. Complexity
The reduced graph Gi keeps nodes of size 1 in a sphere

of radius α centered at nki,pi , nodes of size 2 in a sphere
of radius 2α centered at nki,pi , etc., and nodes of size 2`

in a sphere of size 2`α centered at nki,pi . All these spheres
contain approximately the same number of nodes S, since

S ≈ volume of the sphere of size 2kα

volume of a node at level k ≈ πd/2

Γ(d
2 + 1)

αd

is independent of k. Hence, while the search space grows
exponentially, as 2`, the number of nodes of the reduced
graph only grows linearly, as `S. Since the number of
nodes per sphere grows exponentially with the dimension
d, it follows that the number of nodes in Gi is linear in
the number of levels of the tree `, and exponential in
the number of dimensions d, that is, |Vi| = O(`2d). As
a comparison, to solve the same problem on a uniform
grid, the graph would have O(2`d) vertices.

1) Finding the reduced graph nodes: The complexity
of this step depends on the number of nodes of the tree
visited to find all the vertices in the reduced graph. It
can be easily shown that the worst case complexity of
this step is O(|Vi|).

2) Finding adjacency: Every pair of vertices is tested
for adjacency, so |Vi|(|Vi|−1)/2 tests are made. Thus the
complexity of this step is O(|Vi|2).

3) Finding the shortest path: If the A* algorithm is
used for this step, the complexity is O(|Ei|+ |Vi| log |Vi|)
but |Ei| is bounded by a linear function of |Vi| because
the number of neighbors of a given hypercube is upper
bounded since the resolution is finite. Hence the com-
plexity of this step is O(|Vi| log |Vi|).

C. Algorithm Parameter Tuning
There are three parameters that can be tuned in the

MSPP algorithm and which affect its performance: the
maximum depth of the tree `, the threshold α used to
calculate the reduced graph, and the threshold ε.

1) Maximum number of levels of the tree `: This
parameter determines at which level of detail the world
map is used and, subsequently, the resolution of the
smallest nodes of the resulting path.

2) Decomposition parameter α: The path constructed
by the algorithm should be a FIP. This is achieved by
choosing only the finest information nodes to be part of
the path. The following proposition gives a condition on
the parameter α ensuring that the neighbors of nki,pi on
Gi are leafs of T .

4213

(a) α = 1
49 nodes

(b) α = 2
217 nodes

(c) α = 5
2377 nodes

Fig. 3: Reduced graph for different values of α. The
original space contains 287,496 nodes.

Proposition 5. Let α ≥
√
d /2. Then the selected nodes

neighboring the current node are finest information nodes,
that is, they are leafs of T .

Figure 3 shows the result of different values for α when
the point of interest is the corner of a cube (d = 3).

V. Application to a Mobile Robot
A. Maps Created From a Vision Sensor

In this section, we describe how we build a 3D multi-
resolution volumetric occupancy map of an environ-
ment from camera images, similarly to [10]. Given a
sequence of camera images, we first obtain a camera
path and a sparse 3D reconstruction by performing visual
SLAM [15], [14]. We model the 3D environment with
the data structure described in Section II. However,
unlike the traditional occupancy mapping work of [21],
[19], we do not assume that each voxel’s occupancy
onkj,pj

is independent of the other voxels. Instead, we
form a 3D conditional random field (CRF) [20] over the
voxel occupancy states {onkj,pj

} that enforces spatial
regularization over neighboring voxels as follows

P ({onkj,pj
}|D) =

1
Z(D)

∏
j

ψu(onkj,pj
)

∏
j,m∈N

ψp(onkj,pj
,onkm,pm

), (3)

where Z(D) is the partition function over the observed
data D, and ψu, ψp are unary and pairwise potentials [20]
described below. The unary potential ψu(onkj,pj

) is de-
fined over each voxel occupancy state onkj,pj

. We use
the sparse point cloud obtained from the visual SLAM
pipeline as range measurements to update the unary
terms in the same way as laser range measurements
are treated in traditional occupancy mapping frame-
work [19], [21]. In (3) ψp(onkj,pj

, onkm,pm
) is the pair-

wise potential, enforcing label consistency between two
neighboring voxels nkj ,pj and nkm,pm falling into a given
neighborhood. We use a Potts potential [20] for ψp, which
takes a higher value when labels are the same, and has
a lower value when they are different, thus penalizing
dissimilar labels across neighboring voxels. The final
occupancy map is obtained by Maximum a Priori (MAP)
inference [9] over the CRF in (3).

Figure 4 shows the results of the map creation and the
planning at the same time applied to the CamVid [2] and
Leuven [11] datasets. The Leuven dataset, specifically,

demonstrates some of the potential pitfalls of having a
short fine resolution horizon. In particular, the path is
not smooth exhibiting several zig-zags. This is owing to
the fact that if the vehicle is far from the wall, the wall
will not be resolved as an obstacle until the robot comes
closer. This may create a path that keeps zigzagging
near the wall as the robot tries different alternatives.
Nonetheless, the robot eventually finds a path to move
forward.

(a) CamVid (b) Leuven

Fig. 4: Results of the planning on the maps reconstructed
from the camera images

B. Real-time Application with Unknown Space Explo-
ration

In this section, we present another application of the
MSPP algorithm in which the robot is equipped with a
laser range sensor and has to reach a known goal while
navigating inside an a priori unknown environment. We
use a real-time simulation environment which creates
strict constraints on runtime. The map is built from the
laser sensor measurements using Octomap [7], and it uses
an incremental method that is fast enough for real time
implementation. The MSPP algorithm is used to plan on
the partially unknown map, and replanning is done when
obstacles are detected along the current planned path.

We use the Gazebo simulation environment and the
Robotic Operating System (ROS) to communicate be-
tween the different modules of the simulator. The sim-
ulator provides the ground truth representation of the
world and integrates the dynamics of the robot based on
the received commands. Noisy laser measurements are
generated at 2Hz and the pose of the robot is sent at
100Hz. The Octomap server creates the tree T using the
measurements received, and sends the new map to the
planner. The planner checks whether the current planned
path is ε-feasible. If it is not ε-feasible it replans until it
finds one, and sends the solution to the path tracker as a
set of waypoints. Finally, the waypoint tracker generates
the motor commands from the current robot pose and
the computed waypoints.

The world used for the simulation is shown in Figure 5.
The robot starts at the center and the goal is the red ball.
The path is recalculated when a new goal is assigned, or
the current planned path is not ε-feasible any more on
the updated map. The computed path is subsequently
smoothed and is fed to the trajectory tracking module.
Figure 6 shows the result of the path smoothing.

4214

Fig. 5: Maze used for the simulation, the red ball rep-
resents the goal. The robot starts at the center of the
maze.

Figure 6 depicts some key frames of the results1. The
benefits of using a multi-scale representation can be
seen since the unknown space is represented by nodes
encoding large regions of the environment, thus reducing
the size of the data kept in memory. The colored cubes
correspond to points measured by the laser sensor, and
clearly show the walls.

(a) Initial path (b) First path re-
calculation

(c) Second path
recalculation

(d) Third path re-
calculation

(e) Fourth path
recalculation

(f) Goal reached

Fig. 6: Results of the mapping and planning simulation.

VI. Conclusions
In this paper, we present a multi-scale perception and

path-planning algorithm. The algorithm is shown to be
complete. The complexity of the algorithm is shown to
grow only linearly, while the size of the map grows expo-
nentially. This allows the algorithm to be implemented
on large maps without excessive execution times. The
proposed algorithm seamlessly integrates multi-scale per-
ception with multi-scale path planning. The results of the
algorithm are applied on 2D and 3D maps created from
a realistic multi-scale perception algorithm involving a
mobile robot navigating in an unknown environment.

1A video of the results can be found in the multimedia attach-
ments.

References
[1] S. Behnke. Local multiresolution path planning. In Robocup

2003: Robot Soccer World Cup VII, pages 332–343. Springer,
2004.

[2] G. Brostow, J. Fauqueur, and R. Cipolla. Semantic object
classes in video: A high-definition ground truth database.
Pattern Recognition Letters, 30(2):88–97, 2009.

[3] R. V. Cowlagi. Hierarchical Motion Planning for Autonomous
Aerial and Terrestrial Vehicles. PhD thesis, Georgia Institute
of Technology - School of Aerospace Engineering, 2011.

[4] D. Ferguson and A. Stentz. Using interpolation to improve
path planning: The Field D* algorithm. Journal of Field
Robotics, 23(2):79–101, 2006.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–
107, 1968.

[6] R. C. Holte, T. Mkadmi, R. M. Zimmer, and A. J. MacDonald.
Speeding up problem solving by abstraction: A graph oriented
approach. Artificial Intelligence, 85(1):321–361, 1996.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard. OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots, 34(3):189–
206, 2013.

[8] S. Kambhampati and L. S. Davis. Multiresolution path
planning for mobile robots. IEEE Journal of Robotics and
Automation, 2(3):135–145, 1986.

[9] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnorr. To-
wards efficient and exact map-inference for large scale discrete
computer vision problems via combinatorial optimization. In
Computer Vision and Pattern Recognition, Portland, OR,
USA, June 25–27 2013.

[10] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg. Joint Se-
mantic Segmentation and 3D Reconstruction from Monocular
Video. In European Conference on Computer Vision, Zurich,
Switzerland, September 6–12, 2014.

[11] L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar,
W. Clocksin, and P. H. Torr. Joint optimisation for object
class segmentation and dense stereo reconstruction. In British
Machine Vision Conference, Aberystwyth, Wales, August 31
– September 3 2010.

[12] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and label-
ing sequence data. In International Conference on Machine
Learning, Williamstown, MA, USA, June 28 – July 1 2001.

[13] Y. Lu, Y. Huo, and P. Tsiotras. An accelerated path-finding
algorithm using multiscale information. IEEE Transactions
on Automatic Control, 57(5):1166–1178, May 2012.

[14] R. Newcombe and A. Davison. Live dense reconstruction with
a single moving camera. In Computer Vision and Pattern
Recognition, San Francisco, CA, USA, June 13–18 2010.

[15] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In
Computer Vision and Pattern Recognition, Washington, DC,
USA, June 27– July 2 2004.

[16] D. K. Pai and L.-M. Reissell. Multiresolution rough terrain
motion planning. IEEE Transactions on Robotics and Au-
tomation, 14(1):19–33, 1998.

[17] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and
D. Lane. Path planning for autonomous underwater vehicles.
IEEE Transactions on Robotics, 23(2):331–341, 2007.

[18] S. Sahni. Data Structures, Algorithms, and Applications in
C++, pages 751–786. New York: WCB McGraw-Hill, 1998.

[19] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
MIT Press, 2005.

[20] C. Wang, N. Komodakis, and N. Paragios. Markov random
field modeling, inference and learning in computer vision and
image understanding: A survey. Computer Vision and Image
Understanding, 117(11):1610 – 1627, 2013.

[21] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and
W. Burgard. OctoMap: A probabilistic, flexible, and compact
3D map representation for robotic systems. In ICRA 2010
Workshop on Best Practice in 3D Perception and Modeling
for Mobile Manipulation, Anchorage, Alaska, USA, May 3–8
2010.

[22] M. Yguel, O. Aycard, and C. Laugier. Wavelet occupancy
grids: a method for compact map building. In Field and
Service Robotics, pages 219–230. Springer, 2006.

4215

