

3D-RCNN: Instance-level 3D Object Reconstruction via Render-and-Compare

Abhijit Kundu

Google Research

Yin Li James M. Rehg

"Perception is our best guess as to what is in the world given our current sensory input and our prior experience"

- Helmholtz 1866

Most scene representations are 2D

Object detection boxes

Instance segmentation masks

Person body keypoints & parts

Our goal: 3D representation for object

Problem Statement: Given an image, estimate 3D shape and 3D pose of all object instances

Goal: 3D representation for objects

Problem Statement: Given an image, estimate 3D **shape** and 3D **pose** of all object instances

Image

3D object instance reconstructions

3D-RCNN: Fast Inverse-Graphics Framework

- Faster-RCNN meta-architecture
- Shape and pose predictions are made on top of RoI-Pooled features

3D-RCNN: Key Questions

- How do we parameterize shape and pose?
- How to achieve 3D equivariance?
- How to train without 3D supervision?

Shape Representation

- Exploit CAD datasets
 - Learn low dimensional parametric shape space for each class
 - For rigid objects: PCA on volumetric representation (TSDF)
 - For articulated objects: SMPL

Pose Representation

- Pose-angles (allocentric viewpoint)
 - Allocentric vs Egocentric

• 2D Center-proj and 2D Amodal bbx

Detector Boxes
Amodal Boxes
Center Projections
Principal Point

On Equivariance

RoIPool creates *scale* and *aspect-ratio invariant* representations RoIPool + "output pasted back" (unnormalize) provides *scale* and *aspect-ratio equivariance*

slide courtesy Kaiming He. Mask R-CNN: A Perspective on Equivariance

We can normalize/de-normalize the 2D targets w.r.t Rol, but we cannot do this for 3D targets

3D Equivariance: The problem

Full image: All three persons have the exact same shape parameters

Rol Images

3D Equivariance: Rol Camera

• We interpret the RoI transformation as image formed by a virtual camera (RoI Camera) which is rotated and has different intrinsics than full-image camera

• Two cameras under pure rotation are related by the *infinite-homography* matrix

$$H_{\infty} = K_r R_c^{-1} K_c^{-1}$$

3D Equivariance: Solution

We need to feed the RoI transformation information captured in the *infinite-homography* matrix for the 3D shape and 3D pose predictions

3D-RCNN: Training with Direct 3D Supervision

3D-RCNN: Training with Render-and-Compare

- We use finite difference for computing derivatives. This is possible because:
 - small number of parameters per instance: 19 (4+2+3+10) for rigid objects, 88 (19 + 69) for person
 - Non-photorealistic rendering is fast
 - The entire shape-decoding, render, and compare happens in GPU (CUDA-GL interop driver)

3D-RCNN: Inference

Fast Inference: Approximately 200ms per image with ResNet50

3D-RCNN: Experiments on Pascal3D+

• Joint detection and 3D Pose estimation

Pascal3D+	Bicycle				Motorcycle				Car			
	AVP ₄	AVP ₈	AVP ₁₆	AVP ₂₄	AVP ₄	AVP ₈	AVP ₁₆	AVP ₂₄	AVP ₄	AVP ₈	AVP ₁₆	AVP ₂₄
Pepik et al.	43.9	40.3	22.9	16.7	31.8	32.0	16.7	10.5	36.9	36.6	29.6	24.6
Tulsiani & Malik	59.4	54.8	42.0	33.4	61.1	59.5	38.8	34.3	55.2	51.5	42.8	40.0
RenderForCNN	50.5	41.1	25.8	22.0	50.8	39.9	31.4	24.4	41.8	36.6	29.7	25.5
Poirson et al.	62.1	56.4	39.6	29.4	62.7	58.6	40.4	30.3	51.4	45.2	35.4	35.7
Massa et al.	67.0	62.5	43.0	39.4	71.5	64.0	49.4	37.5	58.3	55.7	46.3	44.2
Xiang et al.	60.4	36.3	23.7	16.4	60.7	37.0	23.4	19.9	48.7	37.2	31.4	24.6
Our Method	74.3	67.2	51.0	42.1	74.4	72.3	52.2	47.1	71.8	65.5	55.6	52.1

3D-RCNN: Experiments on KITTI

3D object instances

3D object instances overlaid

3D-RCNN: Experiments on Surreal

Surreal: Varol et al. Learning from Synthetic Humans. CVPR 2017

Modern Inverse-Graphics architectures

3D-RCNN: Summary

- Fast inverse-graphics network
- Exploits 3D CAD datasets for instance-level, class-specific shape prior
- Novel parametrization of shape and pose
- Differentiable Render-and-Compare

Questions and Feedback

