GIST: Context Based Scene Recognition

Rahul Sawhney
Abhijit Kundu
GIST

- Gist is a holistic statistical signature of the image, yielding abstract scene classification and layout.

Forests are “enclosed”

![Forest images](image1.jpg) ![Forest images](image2.jpg) ![Forest images](image3.jpg) ![Forest images](image4.jpg) ![Forest images](image5.jpg) ![Forest images](image6.jpg)

Beaches are “open”

![Beach images](image7.jpg) ![Beach images](image8.jpg) ![Beach images](image9.jpg) ![Beach images](image10.jpg) ![Beach images](image11.jpg) ![Beach images](image12.jpg)
A scene can be represented by a vector of values for each spatial envelope property.
GIST: Application & Advantages

- Considers the whole scene. Not based on detection of individual objects in the scene.
- Can be used as a prior for object detection, i.e., it can improve object detection based on the context of the scene.

(a) Isolated object (b) Object in context (c) Low-res Object
GIST: the method

- **Create filter bank**: precompute the filter transfer functions (gabor filters), tuned to different orientations and scale.

- **Prefilter the image**: normalization of luminance variance, contrast, whitening transform. Costly operations include FFT, padding.

- **Compute Gist Descriptor**: Convolve the filters computed earlier in frequency domain, so that convolution is element-wise matrix multiplication. Divide the image into local regions and the mean of magnitude of local features represent the gist descriptor.

- **Dimension Reduction**: Default configuration of 3 scales, with 8, 8, and 4 orientations, for 4x4 windows computed in 3 channel color image gives 960 features. Methods like PCA, ICA are used to reduce dimensions.
GIST models

- [1]. Oliva & Torralba, “Modeling the shape of the scene: A holistic representation of the spatial envelope,” IJCV 2001 (MATLAB code for computing gist feature vectors available [link](#))

- [4]. Siagian & Itti, “Rapid biologically-inspired scene classification using features shared with visual attention,” PAMI 2007 (C++ implementation integrated into iLab Neuromorphic Vision C++ Toolkit [link](#))
The model computes magnitude spectrum of Windowed Fourier Transform, here we use 4 by 4 equally-sized, non-overlapping regions. We then reduce the feature dimension with Principal component Analysis (PCA) before classifying the scenes.

Matlab code to compute gist descriptor available. ([link](#))

We based our implementation over this model.
GIST: Our implementation

1. **Matlab code:** Available online for computing gist descriptor of a scene. (Olivia-Torralba, 2001)

2. **C implementation:** We implemented the torallba 2001 gist model (in matlab) in C. We used FFTW libraries to compute fourier transform. Slightly faster than matlab.

3. **GPU parallelization:** Some of the functions has been parallelized by running them in GPU using CUDA. We also make use of the inbuilt libraries like CUFFT & CUBLAS.
GIST: Results
GIST: Results
GIST: Results
GIST: GPU Parallelization

- All the operations performing on each pixels can be parallelized.

- Each thread can compute the operations on each of these pixels. Thus total number of threads can go up to \((\text{img_size} \times \text{img_size} \times \text{channels})\).

- Use inbuilt libraries to calculate transforms like FFT, available in CUFFT.

- Convolution is done in frequency domain, and is faster than naïve convolution. Again use of FFT.
GIST: Comparison

Time chart for computing the function to create Gabor filter bank

32^2 indicates an image of 32x32 pixels, Time is shown in milliseconds
Future Work

- Parallelize more portion of the code. Use of advanced features like thread cooperation, shared memory...

- Make OpenCV implementation of GIST (need to use the API of opencv, DFT functions exists in opencv. Also need to follow OpenCV coding style and guidelines.)
GIST: Context Based Scene Recognition